Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

## Three hexahydropyridopyrimidine-spiro-cyclohexanetriones: supramolecular structures generated by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N} — \mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds, and $\pi-\pi$ stacking interactions

John N. Low, ${ }^{\text {a }} \ddagger$ George Ferguson, ${ }^{\text {b }}$ Justo Cobo, ${ }^{\text {c }}$ Manuel  Glidewell ${ }^{\text {f* }}$

${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ${ }^{\text {b }}$ Department of Chemistry, University of Guelph, Ontario, Canada N1G 2W1, ${ }^{\text {c Departamento de Química Inorgánica y Orgánica, Universidad }}$ de Jaén, 23071 Jaén, Spain, d Departamento de Química, Universidad de Nariño, Cuidad Universitaria, Torobajo, AA 1175, Pasto, Colombia, ${ }^{\text {e }}$ Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle,
AA 25360, Cali, Colombia, and 'School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
Correspondence e-mail: cg@st-andrews.ac.uk

Received 14 April 2004
Accepted 20 April 2004
Online 22 May 2004
4',4'-Dimethyl-2-methylsulfanyl-3,4,5,6,7,8-hexahydropyrido-[2,3- $d$ ]pyrimidine-6-spiro- $1^{\prime}$-cyclohexane- $2^{\prime}, 4,6^{\prime}$-trione, $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$, (I), has a markedly polarized molecularelectronic structure, and the molecules are linked into a three-dimensional framework by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds. 8-Hydroxy-methyl-4', $4^{\prime}$-dimethyl-2-methylsulfanyl-3,4,5,6,7,8-hexahydropyrido $\left[2,3-d\right.$ ]pyrimidine-6-spiro- $1^{\prime}$-cyclohexane- $2^{\prime}, 4,6^{\prime}$-trione, $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$, (II), where the hydroxymethyl substituent is disordered over two sets of sites, has a much less polarized structure than (I); the molecules are linked by a combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into chains containing alternating $R_{2}^{2}(8)$ and $R_{2}^{2}(16)$ rings, and these chains are linked into sheets by a combination of a $\pi-\pi$ stacking interaction and a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. 8-Ethoxymethyl-2-methoxy- $4^{\prime}, 4^{\prime}$-dimethyl-3,4,5,6,7,8-hexahydropyrido $[2,3-d]$ -pyrimidine-6-spiro- $1^{\prime}$-cyclohexane- $2^{\prime}, 4,6^{\prime}$-trione, $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$, (III), has an unpolarized electronic structure, and a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds links the molecules into sheets.

## Comment

Dihydropyridine systems are of current interest because of their exceptional properties as calcium antagonists (Bossert \&

[^0]Vater, 1989) and as powerful arteriolar vasodilators (Kazda \& Towart, 1981). As part of a search for new fused heterocyclic systems containing dihydropyridine units, we have been exploring the use of three-component cyclocondensation

(I)

(II)

(Ia)

(Ib)

(III)
reactions between 4 -aminopyrimidin-4( $3 H$ )-ones, dimedone (5,5-dimethyl-1,3-cyclohexanedione) and simple aliphatic aldehydes, in the expectation of forming pyrimidinoquinolines. In the event, reactions of this type, using an excess of formaldehyde in the presence of triethylamine, have led to the formation of spiro compounds rather than the expected pyrimidinoquinolines, and we report here the molecular and supramolecular structures of three such compounds, (I)-(III). All of the molecules are chiral, but the compounds studied all crystallize in the centrosymmetric space group $P \overline{1}$ and hence are racemic. The structure of (II) is complicated by the disorder of the $-\mathrm{CH}_{2} \mathrm{OH}$ substituent at atom N 8 , which was modelled using sets of sites, each with an occupancy of 0.5 , corresponding to two distinct orientations for this group.


Figure 1
The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level.

The bond lengths in (I) (Fig. 1 and Table 1) show some discrepancies when compared with typical values for bonds of similar types (Allen et al., 1987). For example, the N3-C4 and $\mathrm{C} 4-\mathrm{O} 4$ bonds are both long for their types, the $\mathrm{C} 4-\mathrm{C} 4 A$ and $\mathrm{C} 4 A-\mathrm{C} 8 A$ bonds are too similar in length to be characterized as single and double bonds, respectively, and the $\mathrm{C} 8 A-\mathrm{N} 8$ bond, involving a three-coordinate N atom, is much shorter than the $\mathrm{C} 8 A-\mathrm{N} 1$ bond, which involves a two-coordinate N atom. These observations, taken together, effectively preclude the polarized form ( $\mathrm{I} a$ ) as an effective contributor to the overall molecular-electronic structure, instead pointing to the importance of the polarized vinylogous amide form (Ib).

Compounds (II) and (III) (Figs. 2 and 3) both show a much smaller degree of electronic polarization. For example, the difference between the $\mathrm{C} 8 A-\mathrm{N} 1$ and $\mathrm{C} 8 A-\mathrm{N} 8$ bond lengths (Tables 3 and 5) is much smaller in (II) and (III) than in (I). Hence, for these compounds, the classically localized forms are the most appropriate representations. We also note here the much greater difference between the $\mathrm{C} 2-\mathrm{O} 2$ and $\mathrm{O} 2-$ C21 distances in (III) $(\sim 0.11 \AA)$ than between the corresponding C2-S2 and S2-C21 distances in (I) and (II) ( $\sim 0.04$ and $\sim 0.02 \AA$, respectively). In each compound, the exocyclic bond angles at atom C 2 are very different from $120^{\circ}$.


Figure 2
The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level. For clarity, only one orientation of the disordered $-\mathrm{CH}_{2} \mathrm{OH}$ substituent is shown.


Figure 3
The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level.

In each of (I)-(III), the ring containing atoms N1 and N3 is effectively planar, but for the ring containing atom N8, the ring-puckering parameters (Cremer \& Pople, 1975) corresponding to the atom sequence $\mathrm{N} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4 A-$ $\mathrm{C} 8 A\left[\theta=129.2(2)^{\circ}\right.$ and $\varphi=304.5(3)^{\circ}$ in (I), $\theta=51.3(3)^{\circ}$ and $\varphi=98.5(3)^{\circ}$ in (II), and $\theta=126.5(3)^{\circ}$ and $\varphi=283.2(4)^{\circ}$ in (III)] indicate that, in each compound, the conformation of this ring is best described as an envelope form, itself dominated by a combination of boat and chair forms (Evans \& Boeyens, 1989). The carbocyclic rings adopt almost perfect chair conformations, with local pseudo-mirror symmetry defined by the plane through atoms C6, C63, C631 and C632. The conformations of the pendent $\mathrm{CH}_{3} X$ substituents $[X=\mathrm{S}$ in (I) and (II), and O in (III)] are similar in (I)-(III), while the $-\mathrm{CH}_{2} \mathrm{OEt}$ unit in (III) exhibits some unusual torsion angles (Table 5).

The molecules of (I) are linked into a three-dimensional framework by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds (Table 2). Two independent $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate a one-dimensional substructure in the form of a chain of rings; these chains are linked into sheets by the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and the sheets are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds. Atom N 3 in the molecule at $(x, y, z)$ acts as a donor to atom O 4 in the molecule at $(1-x, 1-y, 1-z)$, so forming a centrosymmetric $R_{2}^{2}(8)$ ring, centred at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (Fig. 4). Similarly, atom N 8 at $(x, y, z)$ acts as a donor to atom O 65 in the molecule at ( $-x, 1-y,-z$ ), forming a centrosymmetric $R_{2}^{2}(12)$ motif, this time centred at $\left(0, \frac{1}{2}, 0\right)$. The propagation by inversion of these two motifs generates a chain running parallel to the [101] direction. Atom C5 in the molecule at $(x, y, z)$ acts as a hydrogen-bond donor to atom O61 in the molecule at ( $-x$,


Figure 4
Part of the crystal structure of (I), showing the formation of a (101) sheet containing four types of centrosymmetric ring. For clarity, H atoms bonded to atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), an ampersand (\&), a plus sign (+), an 'at' sign (@), a dollar sign (\$) or a hash (\#) are at the symmetry positions $(1-x, 1-y, 1-z),(1+x, y, 1+z),(1-x, 2-y, 1-z),(x, 1+y, z)$, $(-x, 2-y,-z)$ and $(-x, 1-y,-z)$, respectively.
$2-y,-z$ ), so forming a third centrosymmetric ring motif, of $R_{2}^{2}(10)$ type, centred at $(0,1,0)$. The combination of this motif with the [101] chains generates a (10 $\overline{1}$ ) sheet (Fig. 4) containing four distinct types of ring, all centrosymmetric; in addition to the $R_{2}^{2}(8), R_{2}^{2}(10)$ and $R_{2}^{2}(12)$ types already described, the sheet also contains $R_{6}^{6}(34)$ rings. Finally, atom C64 in the molecule at $(x, y, z)$, which lies in the sheet passing through $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, acts as a hydrogen-bond donor, via H64A, to the $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{N} 3 / \mathrm{C} 4 / \mathrm{C} 4 A / \mathrm{C} 8 A$ ring in the molecule at $(1-x$, $1-y,-z)$, which lies in the sheet passing through $\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$. The formation of this further centrosymmetric motif (Fig. 5) thus serves to link all of the centrosymmetric sheets into a single framework.

The molecules of (II) are linked by a combination of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 4) into chains, and these chains are linked into sheets by a combination of a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and a $\pi-\pi$ stacking interaction. The


Figure 5
Part of the crystal structure of (I), showing the centrosymmetric linking of the molecules by pairs of $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds. For clarity, H atoms bonded to atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1-x, $1-y,-z$ ).


Figure 6
A stereoview of part of the crystal structure of (II), showing the formation of a chain of rings along [101]. For clarity, H atoms bonded to C atoms have been omitted and only one orientation of the disordered $-\mathrm{CH}_{2} \mathrm{OH}$ group is shown.
description of the supramolecular aggregation is complicated by the disorder of the pendent $-\mathrm{CH}_{2} \mathrm{OH}$ unit. Atom N 3 in the molecule at $(x, y, z)$ acts as a hydrogen-bond donor to carbonyl atom O 4 in the molecule at $(2-x, 1-y, 1-z)$, so forming a fully ordered $R_{2}^{2}(8)$ motif centred at $\left(1, \frac{1}{2}, \frac{1}{2}\right)$. In addition, the partially occupied O8 $A$ site at $(x, y, z)$ acts as a donor to carboxyl atom O61 in the molecule at ( $1-x, 1-y$, $-z$ ). There is also a much longer, and hence presumably weaker, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interaction involving the alternative atom site, $\mathrm{O} 8 B$, as a donor and the same O 61 atom as an acceptor. Hence, regardless of which site, $\mathrm{O} 8 A$ or $\mathrm{O} 8 B$, is occupied, there will be two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ linkages between the pair of molecules in question, forming an $R_{2}^{2}(16)$ ring. If the $\mathrm{O} 8 A$ sites were occupied in both molecules, the ring would be centrosymmetric. At the local level, such pairs of molecules can, in fact, be linked by zero, one or two strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with a mean of one such bond. In any event, the combination of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generates a chain of rings running parallel to the [101] direction (Fig. 6).

Two weaker interactions combine to link the [101] chains into sheets. The $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{N} 3 / \mathrm{C} 4 / \mathrm{C} 4 A / \mathrm{C} 8 A$ rings in the molecules at $(x, y, z)$ and $(1-x, 1-y, 1-z)$ are parallel, with an interplanar spacing of 3.583 (2) $\AA$; the ring-centroid separation is 3.878 (2) $\AA$, corresponding to a centroid offset of 1.484 (2) $\AA$ (Fig. 7). The molecules involved lie in adjacent


Figure 7
Part of the crystal structure of (II), showing the $\pi-\pi$ stacking interaction that links the [101] chains into sheets. For clarity, H atoms bonded to C atoms have been omitted, the unit-cell box has been omitted and only one orientation of the disordered $-\mathrm{CH}_{2} \mathrm{OH}$ group is shown.


Figure 8
A stereoview of part of the crystal structure of (II), showing the action of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond in linking adjacent [101] chains. For clarity, H atoms bonded to C atoms but not involved in the motif shown have been omitted, and only one orientation of the disordered $-\mathrm{CH}_{2} \mathrm{OH}$ group is shown.
[101] chains, separated by a unit translation along [100]. This interaction is reinforced by a single $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond; atom C62 in the molecule at $(x, y, z)$ acts as a donor, via $\mathrm{H} 62 B$, to the partially occupied O8A site in the molecule at $(-x$, $1-y,-z$ ) (Fig. 8).

In (III), the molecules are linked into sheets by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen


Figure 9
Part of the crystal structure of (III), showing the formation of a [2 $\overline{1} 0$ ] chain of centrosymmetric $R_{2}^{2}(8)$ and $R_{2}^{2}(10)$ rings. For clarity, H atoms bonded to atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash (\#) or a dollar sign (\$) are at the symmetry positions $(1-x, 1-y, 1-z),(3-x,-y, 1-z)$ and $(-2+x, 1+y, z)$, respectively.


Figure 10
Part of the crystal structure of (III), showing the centrosymmetric linking of the molecules by pairs of $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds. For clarity, H atoms bonded to atoms not involved in the motif shown have been omitted. The atom marked with an asterisk $(*)$ is at the symmetry position $(2-x,-y, 1-z)$.
bonds (Table 6). Pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate a chain containing two types of centrosymmetric ring, and these chains are linked by C $\mathrm{H} \cdots \pi$ hydrogen bonds. Amine atom N 3 in the molecule at $(x$, $y, z)$ acts as a hydrogen-bond donor to amide atom O 4 in the molecule at $(1-x, 1-y, 1-z)$, thereby generating a centrosymmetric $R_{2}^{2}(8)$ motif centred at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. In addition, ring atom C 7 at $(x, y, z)$ acts as a donor, via $\mathrm{H} 7 B$, to the exocyclic atom O 81 in the molecule at $(3-x,-y, 1-z)$, so forming an $R_{2}^{2}(10)$ ring centred at $\left(\frac{3}{2}, 0, \frac{1}{2}\right)$. Propagation by inversion of these two hydrogen bonds then generates a chain running parallel to the [2 $\overline{10} 0]$ direction, in which $R_{2}^{2}(8)$ and $R_{2}^{2}(10)$ rings alternate (Fig. 9). Finally, atom C 7 in the molecule at $(x, y, z)$, which is part of the [2 $\overline{1} 0]$ chain passing through $\left(\frac{1}{2}\right.$, $\frac{1}{2}, \frac{1}{2}$ ), acts as a hydrogen-bond donor, via $\mathrm{H} 7 A$, to the $\mathrm{N} 1 / \mathrm{C} 2 /$ $\mathrm{N} 3 / \mathrm{C} 4 / \mathrm{C} 4 A / \mathrm{C} 8 A$ ring in the molecule at $(2-x,-y, 1-z)$, which itself lies in the [2 $\overline{1} 0]$ chain passing through $\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. The resulting centrosymmetric motif (Fig. 10) thus serves to link [2 10$]$ chains into a (001) sheet. Although the structures of both (I) and (III) contain $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds, they differ in that the donor atoms lie in different rings in the two compounds.

The formation of (I) from the precursor aminopyrimidine, dimedone and two molecules of formaldehyde is straightforward, proceeding via the intermediate (IV); we have recently reported the structure of the $N^{3}$-methyl analogue of (IV) (Low et al., 2004). Further reaction at the secondary amine atom N8 of the primary product of type $(A)$ with another molecule of formaldehyde in the presence of ethanol can lead, via a hydroxymethyl derivative, (B) [cf. compound (II)], to an ethoxymethyl product, ( $C$ ) [cf. compound (III)].

(IV)

(A)
(B)

(C)

## Experimental

For the preparation of (I), dimedone ( 2 mmol ), a large excess of an aqueous solution ( $37 \% w / w$ ) of formaldehyde ( 30 mmol formaldehyde) and triethylamine ( 0.5 mmol ) were added to a solution of 6-amino-2-methylsulfanyl-3,4-dihydropyrimidin-4-one ( 2 mmol ) in
ethanol, and this mixture was heated under reflux for 90 min . After cooling the mixture, the resulting white product, (I), was filtered off and washed with ethanol (m.p. 563-567 K). Analysis found: C 55.7, H 5.8, N 12.8 , S $10.0 \% ; \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires: C 13.1, H 6.0, $\mathrm{N} 13.1, \mathrm{~S}$ $10.0 \%$. Compound (II) was an occasional and erratic by-product of this reaction. For the preparation of (III), dimedone ( 2 mmol ) and a large excess of an aqueous solution ( $37 \% \mathrm{w} / \mathrm{w}$ ) of formaldehyde ( 30 mmol ) were added to a solution of 6 -amino-2-methoxy-3,4-di-hydropyrimidin-4-one ( 2 mmol ) in ethanol, and this mixture was heated under reflux for 90 min . After cooling the mixture, the resulting white product, (III), was filtered off and washed with ethanol (m.p. 533-536 K). For (I) and (II), crystals suitable for singlecrystal X-ray diffraction were grown from solutions in wet dimethyl sulfoxide; crystals of (III) suitable for single-crystal X-ray diffraction were grown from a solution in ethanol.

## Compound (I)

## Crystal data

$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
$Z=2$
$M_{r}=321.39$
Triclinic, $P \overline{1}$
$a=7.8990$ (3) $\AA$
$b=10.0386$ (3) $\AA$
$c=10.0500$ (3) A
$\alpha=74.938$ (2) ${ }^{\circ}$
$\beta=84.271(2)^{\circ}$
$\gamma=81.842(2)^{\circ}$
$V=760.10(4) \AA^{3}$

$$
\begin{aligned}
& D_{x}=1.404 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3462 \\
& \quad \text { reflections } \\
& \theta=3.2-27.5^{\circ} \\
& \mu=0.23 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.42 \times 0.38 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Nonius KappaCCD diffractometer $\varphi$ scans, and $\omega$ scans with $\kappa$ offsets Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
$T_{\text {min }}=0.921, T_{\text {max }}=0.956$
15364 measured reflections 3462 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.125$
$S=1.04$
3462 reflections
202 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I).

| $\mathrm{N} 1-\mathrm{C} 2$ | $1.300(2)$ | $\mathrm{C} 8 A-\mathrm{N} 8$ | $1.342(2)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{C} 2-\mathrm{N} 3$ | $1.356(2)$ | $\mathrm{C} 7-\mathrm{N} 8$ | $1.455(2)$ |
| $\mathrm{N} 3-\mathrm{C} 4$ | $1.395(2)$ | $\mathrm{C} 2-\mathrm{S} 2$ | $1.7547(18)$ |
| $\mathrm{C} 4-\mathrm{C} 4 A$ | $1.409(2)$ | $\mathrm{S} 2-\mathrm{C} 21$ | $1.7983(19)$ |
| $\mathrm{C} 4 A-\mathrm{C} 8 A$ | $1.391(2)$ | $\mathrm{C} 61-\mathrm{O} 61$ | $1.216(2)$ |
| $\mathrm{C} 8 A-\mathrm{N} 1$ | $1.379(2)$ | $\mathrm{C} 65-\mathrm{O} 65$ | $1.219(2)$ |
| $\mathrm{C} 4-\mathrm{O} 4$ | $1.253(2)$ |  |  |
|  |  |  | $113.71(13)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$ | $125.04(16)$ | $\mathrm{N} 3-\mathrm{C} 2-\mathrm{S} 2$ | $100.96(9)$ |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{S} 2$ | $121.25(14)$ | $\mathrm{C} 2-\mathrm{S} 2-\mathrm{C} 21$ |  |
|  |  |  | $58.5(2)$ |
| $\mathrm{C} 4 A-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $51.41(18)$ | $\mathrm{C} 6-\mathrm{C} 61-\mathrm{C} 62-\mathrm{C} 63$ | $-56.58(18)$ |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 8$ | $-50.4(2)$ | $\mathrm{C} 61-\mathrm{C} 62-\mathrm{C} 63-\mathrm{C} 64$ | -C |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 8 A$ | $26.8(3)$ | $\mathrm{C} 62-\mathrm{C} 63-\mathrm{C} 64-\mathrm{C} 65$ | $54.3(2)$ |
| $\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 8 A-\mathrm{C} 4 A$ | $-2.5(3)$ | $\mathrm{C} 63-\mathrm{C} 64-\mathrm{C} 65-\mathrm{C} 6$ | $-53.2(2)$ |
| $\mathrm{N} 8-\mathrm{C} 8 A-\mathrm{C} 4 A-\mathrm{C} 5$ | $4.8(3)$ | $\mathrm{C} 64-\mathrm{C} 65-\mathrm{C} 6-\mathrm{C} 61$ | $49.58(19)$ |
| $\mathrm{C} 8 A-\mathrm{C} 4 A-\mathrm{C} 5-\mathrm{C} 6$ | $-30.3(2)$ | $\mathrm{C} 65-\mathrm{C} 6-\mathrm{C} 61-\mathrm{C} 62$ | $-52.5(2)$ |

Table 2
Hydrogen-bonding geometry ( $\mathrm{A},{ }^{\circ}$ ) for (I).
$C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{N} 3 / \mathrm{C} 4 / \mathrm{C} 4 A / \mathrm{C} 8 A$ ring.

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| N3-H3 . . O $4^{\text {i }}$ | 0.88 | 1.84 | 2.715 (2) | 176 |
| N8-H8 ${ }^{\text {O }}$ O65 $5^{\text {ii }}$ | 0.88 | 2.10 | 2.965 (2) | 166 |
| C5-H5B $\cdots$ O6 ${ }^{\text {iii }}$ | 0.99 | 2.46 | 3.389 (2) | 155 |
| $\mathrm{C} 64-\mathrm{H} 64 A \cdots \mathrm{Cg} 1^{\text {iv }}$ | 0.99 | 2.87 | 3.854 (2) | 173 |

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-y,-z$; (iii) $-x, 2-y,-z$; (iv) $1-x,-y,-z$.

## Compound (II)

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=351.42$
$D_{x}=1.435 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$
Mo $K \alpha$ radiation
Cell parameters from 3737 reflections
$a=6.6682(2) \AA$
$b=11.0319$ (3) $\AA$
$\theta=3.2-27.5^{\circ}$
$c=12.3449(4) \AA$
$\mu=0.23 \mathrm{~mm}^{-1}$
$\alpha=109.2678(18)^{\circ}$
$T=120$ (2) K
$\beta=99.8329$ (18) ${ }^{\circ}$
Plate, colourless
$\gamma=101.227(2)^{\circ}$
$0.15 \times 0.10 \times 0.03 \mathrm{~mm}$
$V=813.32(5) \AA^{3}$
$Z=2$
Data collection
Nonius KappaCCD diffractometer $\varphi$ scans, and $\omega$ scans with $\kappa$ offsets
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
$T_{\text {min }}=0.976, T_{\text {max }}=0.994$
18379 measured reflections
3737 independent reflections
Refinement
Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /[ \sigma^{2}\left(F_{o}^{2}\right)+(0.066 P)^{2} \\
&+0.2491 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }= 0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 3
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (II).

| N1-C2 | 1.294 (3) | C8A-N8 | 1.362 (3) |
| :---: | :---: | :---: | :---: |
| C2-N3 | 1.334 (3) | C7-N8 | 1.456 (2) |
| N3-C4 | 1.395 (3) | C2-S2 | 1.756 (2) |
| C4-C4A | 1.414 (3) | S2-C21 | 1.779 (3) |
| $\mathrm{C} 4 A-\mathrm{C} 8 A$ | 1.374 (3) | C61-O61 | 1.212 (2) |
| C 8 - N 1 | 1.379 (3) | C65-O65 | 1.206 (2) |
| C4-O4 | 1.239 (3) |  |  |
| N1-C2-N3 | 124.60 (19) | N3-C2-S2 | 114.25 (17) |
| N1-C2-S2 | 121.14 (19) | C2-S2-C21 | 99.74 (12) |
| $\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | -46.1 (2) | C6-C61-C62-C63 | -55.9 (2) |
| C5-C6-C7-N8 | 59.0 (2) | C61-C62-C63-C64 | 56.3 (2) |
| C6-C7-N8-C8A | -42.4 (3) | C62-C63-C64-C65 | -55.6 (3) |
| $\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 8 A-\mathrm{C} 4 A$ | 12.1 (3) | C63-C64-C65-C6 | 52.5 (2) |
| $\mathrm{N} 8-\mathrm{C} 8 A-\mathrm{C} 4 A-\mathrm{C} 5$ | 1.0 (3) | C64-C65-C6-C61 | -45.7 (2) |
| $\mathrm{C} 8 A-\mathrm{C} 4 A-\mathrm{C} 5-\mathrm{C} 6$ | 18.1 (3) | C65-C6-C61-C62 | 48.1 (2) |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 81$ A | 139.6 (4) | C6-C7-N8-C81B | 158.5 (4) |
| $\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 81 A-\mathrm{O} 8 A$ | -61.9 (14) | $\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 81 B-\mathrm{O} 8 B$ | -113.3 (9) |

Table 4
Hydrogen-bonding geometry ( $\AA,^{\circ}$ ) for (II).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\mathrm{v}}$ | 0.88 | 1.83 | 2.709 (3) | 176 |
| $\mathrm{O} 8 A-\mathrm{H} 8 A \cdots \mathrm{O} 61{ }^{\text {vi }}$ | 0.84 | 2.00 | 2.767 (3) | 152 |
| $\mathrm{O} 8 B-\mathrm{H} 8 B \cdots \mathrm{O}^{\text {d }}{ }^{\text {vi }}$ | 0.84 | 2.35 | 3.036 (4) | 139 |
| $\mathrm{C} 62-\mathrm{H} 62 B \cdots \mathrm{O} 8 A^{\text {ii }}$ | 0.99 | 2.33 | 3.314 (4) | 173 |

Symmetry codes: (ii) $-x, 1-y,-z$; (v) $2-x, 1-y, 1-z$; (vi) $1-x, 1-y,-z$.

## Compound (III)

## Crystal data

$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$
$M_{r}=363.41$
Triclinic, $P \overline{1}$
$a=8.9219$ (5) A
$b=9.9806$ (5) $\AA$
$c=11.3542(7) \AA$
$\alpha=75.662(3)^{\circ}$
$\beta=85.580(3)^{\circ}$
$\gamma=66.526(3)^{\circ}$
$V=898.22(9) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.344 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 4082 reflections
$\theta=2.9-27.6^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Prism, colourless
$0.15 \times 0.10 \times 0.10 \mathrm{~mm}$

## Data collection

Nonius KappaCCD diffractometer $\varphi$ scans, and $\omega$ scans with $\kappa$ offsets Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
$T_{\text {min }}=0.967, T_{\max }=0.990$
17797 measured reflections
4082 independent reflections

2026 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.088$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 14$

Table 5
Selected geometric parameters ( $\mathrm{A},{ }^{\circ}$ ) for (III).

| N1-C2 | 1.292 (3) | C8A-N8 | 1.370 (3) |
| :---: | :---: | :---: | :---: |
| C2-N3 | 1.343 (3) | C7-N8 | 1.451 (3) |
| N3-C4 | 1.388 (3) | $\mathrm{C} 2-\mathrm{O} 2$ | 1.334 (3) |
| $\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$ | 1.412 (3) | $\mathrm{O} 2-\mathrm{C} 21$ | 1.447 (3) |
| $\mathrm{C} 4 A-\mathrm{C} 8 A$ | 1.378 (3) | C61-O61 | 1.213 (3) |
| C 8 - N 1 | 1.375 (3) | C65-O65 | 1.210 (3) |
| C4-O4 | 1.250 (3) |  |  |
| N1-C2-N3 | 125.1 (2) | N3-C2-O2 | 113.1 (2) |
| N1-C2-O2 | 121.8 (2) | $\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 21$ | 115.51 (18) |
| $\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | 47.6 (3) | C6-C61-C62-C63 | 55.5 (3) |
| C5-C6-C7-N8 | -58.7 (2) | C61-C62-C63-C64 | -56.8 (3) |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 8$ A | 39.4 (3) | C62-C63-C64-C65 | 55.1 (3) |
| $\mathrm{C} 7-\mathrm{N} 8-\mathrm{C} 8 A-\mathrm{C} 4 A$ | -7.4 (3) | C63-C64-C65-C6 | -51.0 (3) |
| $\mathrm{N} 8-\mathrm{C} 8 A-\mathrm{C} 4 A-\mathrm{C} 5$ | -3.4 (4) | C64-C65-C6-C61 | 44.1 (3) |
| $\mathrm{C} 8 A-\mathrm{C} 4 A-\mathrm{C} 5-\mathrm{C} 6$ | -18.9 (3) | C65-C6-C61-C62 | -46.8 (3) |
| C6-C7-N8-C81 | -142.4 (2) | N8-C81-O81-C82 | 71.3 (3) |
| C7-N8-C81-O81 | 74.4 (3) | C81-O81-C82-C83 | 82.4 (3) |

Table 6
Hydrogen-bonding geometry ( $\mathrm{A},{ }^{\circ}$ ) for (III).
$C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{N} 3 / \mathrm{C} 4 / \mathrm{C} 4 A / \mathrm{C} 8 A$ ring.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| N3-H3 $\cdots \mathrm{O}^{\text {i }}$ | 0.88 | 1.89 | $2.769(2)$ | 173 |
| C7-H7B $\cdots$ O $^{\text {vii }}$ | 0.99 | 2.49 | $3.414(3)$ | 155 |
| ${\text { C7-H7A } \cdots \text { C 1 }^{\text {vii }}}^{2}$ | 0.99 | 2.62 | $3.535(3)$ | 155 |

[^1]
## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.164$
$S=0.95$
4082 reflections
239 parameters

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0803 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}
\end{aligned}
$$

Crystals of (I)-(III) are triclinic; space group $P \overline{1}$ was selected for each and confirmed by the subsequent structure analyses. In (II), the hydroxymethyl substituent is disordered; it was modelled using two sets of atom sites (C81A/O8A for one orientation and C81B/O8B for the other), all atoms having an occupancy of 0.50 . All H atoms were located from difference maps and then treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.98\left(\mathrm{CH}_{3}\right)$ or $0.99 \AA\left(\mathrm{CH}_{2}\right), \mathrm{N}-\mathrm{H}$ distances of $0.88 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.84 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\mathrm{eq}}(X)(X=\mathrm{C}, \mathrm{N}$ and O$)\left[1.5 U_{\mathrm{eq}}(\mathrm{C})\right.$ for the methyl groups $]$.

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003) [for (I) and (II)] and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JC and MN thank the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support, JQ thanks COLCIENCIAS and the Universidad de Valle for financial support, and SC thanks COLCIENCIAS and the Universidad de Nariño for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1722). Services for accessing these data are described at the back of the journal.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Bossert, F. \& Vater, W. (1989). Med. Res. Rev. 9, 291-324.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Evans, D. G. \& Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Kazda, S. \& Towart, R. (1981). Br. J. Pharmacol. 72, P582-583.
Low, J. N., Cobo, J., Cruz, S., Quiroga, J. \& Glidewell, C. (2004). Acta Cryst. C60, o191-o193.
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.


[^0]:    $\ddagger$ Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

[^1]:    Symmetry codes: (i) $1-x, 1-y, 1-z$; (vii) $3-x,-y, 1-z$; (viii) $2-x,-y, 1-z$.

